Investigation of the Spin Hamiltonian Parameters and the Local Structure of Two Ni $^{3+}$ Centers in KTaO $_3$

Shao-Yi Wu^{a,b}, Hui-Ning Dong^{b,c}, and Wang-He Wei^a

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: wushaoyi@netease.com.

Z. Naturforsch. **59a**, 203 – 208 (2004); received September 26, 2003

The spin Hamiltonian anisotropic g factors g_{\parallel} and g_{\perp} and the local structures of the Ni³⁺ centers I and II in K Ta O₃ are theoretically investigated by using the perturbation formulas of the spin Hamiltonian parameters for 3d⁷ ions in tetragonally distorted octahedrons and dodecahedrons. By analyzing the electron paramagnetic resonance data of the studied systems, the centers I and II can be attributed to Ni³⁺ ions occupying octahedral Ta⁵⁺ (associated with a nearest-neighbour oxygen vacancy $V_{\rm O}$ along the C_4 axis) and the dodecahedral K⁺ (associated with a nearest-neighbour interstitial oxygen O_I along the C_4 axis) sites, respectively. Based on these studies, it is found that at the center I the impurity Ni³⁺ is displaced away from $V_{\rm O}$ by $\Delta Z_{\rm I} \approx -0.31(2)$ Å along the C_4 axis. At the center II a large off-center displacement, $\Delta Z_{\rm II} \approx 1.12(2)$ Å, towards the O_I along the C_4 axis is obtained, due to Ni³⁺-O_I covalent bonding.

Key words: Electron Paramagnetic Resonance; Defect Structures; Crystal- and Ligand-field Theory; Ni^{3+} ; K Ta O_3 .